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Convection in a box: on the dependence of 
preferred wave-number upon the Rayleigh number 

at finite amplitude 
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Using Stuart’s shape assumption and a condition of maximum heat transport 
it is found that the preferred number of finite roll cells present in BBnard con- 
vection in a three-dimensional rectangular box tends to decrease with increasing 
supercritical Rayleigh number in contradiction to the behaviour in an infinite 
layer but in accordance with experimental observation. 

This ‘end effect ’ might explain the similar observation of wave-number 
decrease in the Taylor instability between rotating cylinders. 

~ 

1. Introduction 
When a horizontal layer of fluid is heated from below to its critical Rayleigh 

number, convection begins. In  the laboratory where a layer is of necessity 
bounded in horizontal extent, Koschmieder (1966) has found that the preferred 
mode of convection is some number of finite roll cells, the shape and orientation 
being dependent upon the shape of the container. If  the Rayleigh number is 
raised further, the wave-number of the rolls tends to decrease. This last observa- 
tion has been made by Krishnamurti (1967) as well as by Koschmieder. A simiIar 
observation has been made by Coles (1965) in the related problem of the Taylor 
instability of fluid contained between concentric rotating cylinders where the 
wave-number of the Taylor vortices tends to decrease with increasing super- 
critical Taylor number. 

Schluter, Lortz & Busse (1965) have computed the effects of finite amplitude 
convection with regard to the preferred mode in the case of a fluid layer of 
in$nite horizontal extent. They find that the wave-number preferred in finite 
amplitude convection increases with increasing supercritical Rayleigh number, 
i.e. the opposite dependence from that observed is found. 

The object of this note is to show that the wave-number dependence on the 
Rayleigh number can be dominated by the presence of the lateral walls. 

Although a full perturbation analysis for small but finite amplitude is desirable, 
the computational difficulties prompt us to use an approximation to  this. We 
will use a slight generalization to Stuart’s (1958) shape assumption using the 
approximate eigenfunctions of the linearized problem as given by Davis (1967) 
for a rectangular box. In all further references we denote this paper by D. In  
addition we assume that the preferred mode is that one which convects the most 
heat. All assumptions are discussed in detail. 
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The result is that when an array of K finite roll cells is preferred in linear theory 
over M finite roll cells, a transition at  a supercritical Rayleigh number is indicated 
if K > M .  When K < M ,  no such transition is indicated, i.e. the wave-number 
tends to decrease with increasing Rayleigh number in accordance with observa- 
tion. 

2. Analysis 

tive initial state v = 0, p(0) = - z are the following: 
The equations which govern a steady-state disturbance to the static, conduc- 

AV - Vp +- 9'QOk = 9-'9h* VV, 

A0 - B@,w = ~B[v-  VB - (a),], 
Tz = - 1 + 94[ ( . l . e )  - (we)], 

v . v  = 0, 

where A = (a2/axz) + (a2/ay2) + (az/az2), V is the grad operator, 8 is the departure 
from the mean temperature p ,  a bar denotes an average over the x, y expanse of 
the box, subscripts denote partial derivatives and ( ) denotes an integral over 
the full volume. The scales used for non-dimensionalization are q = (a(AT)gdlc/v)'Q, 
AT,p,vq/d and depth d forvelocity, temperature, pressure and lengthrespectively. 
Here a, g, K,  v andp, are the volume expansion coefficient, acceleration of gravity, 
thermal conductivity, kinematic viscosity and density a t  the centre of the layer 
respectively. AT is the over-all vertical temperature difference, 

9 = a(AT) gd3/KV 

is the Rayleigh number and 9 = v / K  is the Prandtl number. The boundaries are 
assumed to be rigid, perfectly heat-conducting planes and hence 

v = 0 = 0 on 1x1 = ih,, IyI = &h2, IzI = &. (2.5) 

We form an energy-type equation by taking the inner product of (2.1) with 
v, multiplying (2.2) by 8, adding and integrating over the volume 

(VV: vv + ve. ve) = 29*(we)  - q ( i i i ) z >  + 9<wey, ( 2 . 6 )  

where we have used equations (2.3),  (2.4), (2.5) and integration by parts. 
We define the convective heat transport H by 

H = 9&(wB). (2.7) 

Using (2.7), equation (2.6) can be simplified to yield 

and 
2(we)2 

( ( W 8 ) Z )  - (w8)Z' 
m =  

(2.8) 

(2.9) 

(2.10) 

Note that m is insensitive to changes of scale in w and 8 and hence to our choice 
of non-dimensional variables. 
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Let us now employ Stuart’s (1958) shape assumption. The procedure is to 
evaluate (2.8) with v = v(l), 8 = N), the eigenfunctions of the linear theory a t  
zero growth rate (marginal case). If we do this, the resulting expression involves 
1(d1), W). Since by equation (3.2) of D, 

L%?;* = max I-1, 

where 1.9 is an appropriate function space, I(+), 8(l)) = L%?g. Therefore, the result 
of applying the shape assumption to (2.8)t is 

S 

(2.11) 

where a subscript su denotes the corresponding functional evaluated with the 
(v, 8) of linear theory at  zero growth rate. 
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FIGURE 1. The dependence of 2Zc on h2 for h, = 1.0 according to linear theory. (Taken 
from figure 7 of Davis (1967).) m, and w, denote m h i t e  2-rolls and n finite y-rolls 
respectively. 

Let us now apply equation (2.11) to a rectangular box with lateral dimensions, 
say, h, = 1.0 and variable h,. Figure 1 (figure 7 of D) exhibits the dependence of 
BC upon h,. At h, = h,, = 4-15, the independent stability curves of 4 finite 
y-rolls and 5 finite y-rolls intersect, the former being the preferred mode for linear 
theory in an interval of h, < h,, and the latter in an interval of h, > h26. The 
results of using the eigenfunctions from D for computing msa when h, = 4.0 and 
h, = 4.5 for both 4 and 5 finite y-rolls are given in table 1 along with the corres- 
ponding critical Rayleigh numbers. The plots of Hsa us. 9 are given in these cases 
in figure 2. 

t Equation (2.11) is valid to order O ( g - g c )  and is the analogue of equation (5.13) 
of Davey (1962) which the author suggests has the greatest validity of all equivalent 
formulae. Equation (2.11) in addition, reproduces the results of Schliiter et al. in the case of 
the layer of infinite horizontal extent. 
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Let us now assume that the preferred mode of convection at  9 > Bc is that one 
which convects the most heat, i.e. the one with maximum H.  Under this proviso, 
as 9 - 9c is increased from zero, the solid curve of figure 2 a is followed until 
W = 9 t .  After this point, the dashed curve corresponds to a mode convecting 

wave- 
hl h, number wc %a 9P 

1*356} 11,408.4 1.0 4.5 5 3,482.5 
1 .o 4.5 4 3,626.4 1.422 

3,535.0 1.411 
1 .o 4.0 5 3,646.1 
1 .o 4.0 4 

TABLE 1. 

(b)  

FIGURE 2 (a) .  An indicated transition. Convective heat transfer using the shape assumption 
as a function of 9. The solid curve corresponds to 5 k i t e  y-rolls, the dashed curve to 4 
finite y-rolls. h, = 1.0, h, = 4.5. ( b )  No indicated transition. Convective heat transfer 
using the shape assumption as a function of 9. The solid curve corresponds to 4 finite 
y-rolls, the dashed curve to 5 finite y - m k  h, = 1.0, h, = 4.0. 

more heat and hence a transition from 5 finite y-rolls to 4 finite y-rolls is indicated. 
In  figure 2 b, however, the two curves, rather than intersecting, tend to diverge 
wibh increasing 92 - Bc. The maximum H then always corresponds to 4 finite 
y-rolls. No transition is indicated. 

The above behaviour is typical of situations for all of the h, and h, examined 
in the range 0.25 < h,, h, < 6 covered by D. In the above, we say that the transi- 
tion is only indicated (rather than assured) because the shape assumption is 
only quantitatively correct in the interval gC < 9 < l * 1 g c .  In  particular, 
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Davey (1962, figures 3 and 4) has found in the axi-symmetric, small gap Taylor 
problem near solid body rotation that the shape assumption yielded the torque 
needed to maintain constant rotation (analogous to H )  to within 1% of that 
predicted by a formal perturbation procedure in the Taylor number interval 
(q, 1.1 Q, within-3% up to 2 q  and within about 10% up to 4%. 

3. Discussion and conclusions 
The shape assumption was suggested by Stuart (1958) for the calculation of 

the finite equilibrium amplitude attained by a disturbance to the unstable flow 
between concentric rotating cylinders. The method neglects the generation of 
harmonics of the fundamental (linear theory solution) and the subsequent 
distortion of the fundamental and mean flow by the harmonics. Davey (1962) 
has used a formal perturbation analysis in the calculation of this secondary flow, 
He has found that the equilibrium amplitude attained near the critical Taylor 
number is precisely that which would be obtained using the shape assumption. 
Since the equations governing an axi-symmetric unstable disturbance to the 
flow between rotating cylinders with small spacing and in nearly solid body 
rotation are precisely those governing the thermal convection of an infinite 
layer with the Prandtl number equal to one, application of the shape assumption 
to convection in a box seems valid. Although valid, the shape assumption cannot 
distinguish a stable disturbance from an unstable one. Hence we assume that at 
finite amplitude finite rolls are the preferred mode of convection. They are 
observed in experiment and are preferred a t  infinitesimal amplitude (Davis 
1967). Schluter, et al. (1965) have shown by a formal perturbation analysis that 
in the infinite layer with constant properties the preferred mode is that one 
convecting the most heat. We have therefore taken this as our criterion for 
selection. It is well to note that had Schliiter et al. used the shape assumption 
and the stability criterion of maximum H ,  their results would have been unaltered. 

We summarize our conclusions as follows: when a rectangular box of fluid is 
heated from below beyond its critical Rayleigh number, there is a tendency for 
the number of finite rolls preferred to decrease. More precisely, if K finite rolls 
are preferred over M finite rolls in linear theory (for given dimensions of the box), 
at  finite amplitude there is a transition indicated from K to M finite rolls if 
K > M but none if K < M .  

Coles (1965) has noted that when the Taylor number in Taylor instability is 
increased beyond its critical value, the axial wave-number of the vortices tends 
to decrease. Although the ends of the concentric cylinders cause the basic Couette 
flow to be altered making our model of convection in a box never strictly identical, 
our conclusions concerning the convective model might still indicate the cause 
of this behaviour. 

The author wishes to thank Professor J. T. Stuart and Dr A. Davey for helpful 
suggestions and discussions and Mrs Margaret Ryan for aid with the numerical 
computations. 
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